Copied to
clipboard

G = C5×C16⋊C22order 320 = 26·5

Direct product of C5 and C16⋊C22

direct product, metabelian, nilpotent (class 4), monomial, 2-elementary

Aliases: C5×C16⋊C22, D162C10, C806C22, C20.65D8, C40.53D4, SD321C10, M5(2)⋊1C10, C40.76C23, C16⋊(C2×C10), C8.3(C5×D4), C4○D82C10, (C5×D16)⋊6C2, D82(C2×C10), C4.14(C5×D8), (C2×D8)⋊10C10, (C10×D8)⋊24C2, Q162(C2×C10), (C5×SD32)⋊5C2, C10.88(C2×D8), (C2×C10).27D8, C4.11(D4×C10), C2.16(C10×D8), C22.5(C5×D8), (C2×C20).346D4, C20.318(C2×D4), (C5×D8)⋊18C22, (C5×M5(2))⋊3C2, C8.7(C22×C10), (C5×Q16)⋊16C22, (C2×C40).278C22, (C5×C4○D8)⋊9C2, (C2×C4).47(C5×D4), (C2×C8).30(C2×C10), SmallGroup(320,1010)

Series: Derived Chief Lower central Upper central

C1C8 — C5×C16⋊C22
C1C2C4C8C40C5×D8C5×D16 — C5×C16⋊C22
C1C2C4C8 — C5×C16⋊C22
C1C10C2×C20C2×C40 — C5×C16⋊C22

Generators and relations for C5×C16⋊C22
 G = < a,b,c,d | a5=b16=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b7, dbd=b9, cd=dc >

Subgroups: 226 in 90 conjugacy classes, 46 normal (30 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, C10, C10, C16, C2×C8, D8, D8, D8, SD16, Q16, C2×D4, C4○D4, C20, C20, C2×C10, C2×C10, M5(2), D16, SD32, C2×D8, C4○D8, C40, C2×C20, C2×C20, C5×D4, C5×Q8, C22×C10, C16⋊C22, C80, C2×C40, C5×D8, C5×D8, C5×D8, C5×SD16, C5×Q16, D4×C10, C5×C4○D4, C5×M5(2), C5×D16, C5×SD32, C10×D8, C5×C4○D8, C5×C16⋊C22
Quotients: C1, C2, C22, C5, D4, C23, C10, D8, C2×D4, C2×C10, C2×D8, C5×D4, C22×C10, C16⋊C22, C5×D8, D4×C10, C10×D8, C5×C16⋊C22

Smallest permutation representation of C5×C16⋊C22
On 80 points
Generators in S80
(1 56 70 31 46)(2 57 71 32 47)(3 58 72 17 48)(4 59 73 18 33)(5 60 74 19 34)(6 61 75 20 35)(7 62 76 21 36)(8 63 77 22 37)(9 64 78 23 38)(10 49 79 24 39)(11 50 80 25 40)(12 51 65 26 41)(13 52 66 27 42)(14 53 67 28 43)(15 54 68 29 44)(16 55 69 30 45)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(2 8)(3 15)(4 6)(5 13)(7 11)(10 16)(12 14)(17 29)(18 20)(19 27)(21 25)(22 32)(24 30)(26 28)(33 35)(34 42)(36 40)(37 47)(39 45)(41 43)(44 48)(49 55)(50 62)(51 53)(52 60)(54 58)(57 63)(59 61)(65 67)(66 74)(68 72)(69 79)(71 77)(73 75)(76 80)
(1 9)(3 11)(5 13)(7 15)(17 25)(19 27)(21 29)(23 31)(34 42)(36 44)(38 46)(40 48)(50 58)(52 60)(54 62)(56 64)(66 74)(68 76)(70 78)(72 80)

G:=sub<Sym(80)| (1,56,70,31,46)(2,57,71,32,47)(3,58,72,17,48)(4,59,73,18,33)(5,60,74,19,34)(6,61,75,20,35)(7,62,76,21,36)(8,63,77,22,37)(9,64,78,23,38)(10,49,79,24,39)(11,50,80,25,40)(12,51,65,26,41)(13,52,66,27,42)(14,53,67,28,43)(15,54,68,29,44)(16,55,69,30,45), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,29)(18,20)(19,27)(21,25)(22,32)(24,30)(26,28)(33,35)(34,42)(36,40)(37,47)(39,45)(41,43)(44,48)(49,55)(50,62)(51,53)(52,60)(54,58)(57,63)(59,61)(65,67)(66,74)(68,72)(69,79)(71,77)(73,75)(76,80), (1,9)(3,11)(5,13)(7,15)(17,25)(19,27)(21,29)(23,31)(34,42)(36,44)(38,46)(40,48)(50,58)(52,60)(54,62)(56,64)(66,74)(68,76)(70,78)(72,80)>;

G:=Group( (1,56,70,31,46)(2,57,71,32,47)(3,58,72,17,48)(4,59,73,18,33)(5,60,74,19,34)(6,61,75,20,35)(7,62,76,21,36)(8,63,77,22,37)(9,64,78,23,38)(10,49,79,24,39)(11,50,80,25,40)(12,51,65,26,41)(13,52,66,27,42)(14,53,67,28,43)(15,54,68,29,44)(16,55,69,30,45), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,29)(18,20)(19,27)(21,25)(22,32)(24,30)(26,28)(33,35)(34,42)(36,40)(37,47)(39,45)(41,43)(44,48)(49,55)(50,62)(51,53)(52,60)(54,58)(57,63)(59,61)(65,67)(66,74)(68,72)(69,79)(71,77)(73,75)(76,80), (1,9)(3,11)(5,13)(7,15)(17,25)(19,27)(21,29)(23,31)(34,42)(36,44)(38,46)(40,48)(50,58)(52,60)(54,62)(56,64)(66,74)(68,76)(70,78)(72,80) );

G=PermutationGroup([[(1,56,70,31,46),(2,57,71,32,47),(3,58,72,17,48),(4,59,73,18,33),(5,60,74,19,34),(6,61,75,20,35),(7,62,76,21,36),(8,63,77,22,37),(9,64,78,23,38),(10,49,79,24,39),(11,50,80,25,40),(12,51,65,26,41),(13,52,66,27,42),(14,53,67,28,43),(15,54,68,29,44),(16,55,69,30,45)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(2,8),(3,15),(4,6),(5,13),(7,11),(10,16),(12,14),(17,29),(18,20),(19,27),(21,25),(22,32),(24,30),(26,28),(33,35),(34,42),(36,40),(37,47),(39,45),(41,43),(44,48),(49,55),(50,62),(51,53),(52,60),(54,58),(57,63),(59,61),(65,67),(66,74),(68,72),(69,79),(71,77),(73,75),(76,80)], [(1,9),(3,11),(5,13),(7,15),(17,25),(19,27),(21,29),(23,31),(34,42),(36,44),(38,46),(40,48),(50,58),(52,60),(54,62),(56,64),(66,74),(68,76),(70,78),(72,80)]])

80 conjugacy classes

class 1 2A2B2C2D2E4A4B4C5A5B5C5D8A8B8C10A10B10C10D10E10F10G10H10I···10T16A16B16C16D20A···20H20I20J20K20L40A···40H40I40J40K40L80A···80P
order1222224445555888101010101010101010···101616161620···202020202040···404040404080···80
size1128882281111224111122228···844442···288882···244444···4

80 irreducible representations

dim1111111111112222222244
type+++++++++++
imageC1C2C2C2C2C2C5C10C10C10C10C10D4D4D8D8C5×D4C5×D4C5×D8C5×D8C16⋊C22C5×C16⋊C22
kernelC5×C16⋊C22C5×M5(2)C5×D16C5×SD32C10×D8C5×C4○D8C16⋊C22M5(2)D16SD32C2×D8C4○D8C40C2×C20C20C2×C10C8C2×C4C4C22C5C1
# reps1122114488441122448828

Matrix representation of C5×C16⋊C22 in GL4(𝔽241) generated by

91000
09100
00910
00091
,
680214227
220105174
221183162
21921918090
,
1116215
0240241
002211
00219219
,
240010050
024042
0010
0001
G:=sub<GL(4,GF(241))| [91,0,0,0,0,91,0,0,0,0,91,0,0,0,0,91],[68,22,22,219,0,0,11,219,214,105,83,180,227,174,162,90],[1,0,0,0,1,240,0,0,16,24,22,219,215,1,11,219],[240,0,0,0,0,240,0,0,100,4,1,0,50,2,0,1] >;

C5×C16⋊C22 in GAP, Magma, Sage, TeX

C_5\times C_{16}\rtimes C_2^2
% in TeX

G:=Group("C5xC16:C2^2");
// GroupNames label

G:=SmallGroup(320,1010);
// by ID

G=gap.SmallGroup(320,1010);
# by ID

G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,589,3446,4204,2111,242,10085,5052,124]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^16=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^7,d*b*d=b^9,c*d=d*c>;
// generators/relations

׿
×
𝔽